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Abstract— A machine vision based gestural interface was 

developed to provide individuals with upper extremity physical 

impairments an alternative way to perform laboratory tasks that 

require “physical” manipulation of components. A color and 

depth based 3D particle filter framework was constructed with 

unique descriptive features for face and hands representation. 

This framework was integrated into an interaction model 

utilizing spatial and motion information to deal efficiently with 

occlusions and its negative effects. More specifically, the 

suggested method proposed solves the “false merging” and “false 

labeling” problems characteristic in tracking through occlusion. 

The same feature encoding technique was subsequently used to 

detect, track and recognize users’ hands. Experimental results 

demonstrated that the proposed approach was superior to other 

state of art tracking algorithms when interaction was present 

(97.52% accuracy). For gesture encoding, dynamic motion 

models were created employing the dynamic time warping 

(DTW) method. The gestures were classified using a Conditional 

Density Propagation (CONDENSATION)-based Trajectory 

Recognition (CTR) method. The hand trajectories were classified 

into different classes (commands) with a recognition accuracy of 

95.9%. In addition, the new approach was validated with the 

“one shot learning” paradigm with comparable results to those 

reported in 2012. In a validation experiment, the gestures were 

used to control a mobile service robot and a robotic arm in a 

laboratory chemistry experiment. Effective control policies were 

selected to achieve optimal performance for the presented 

gestural control system through comparison of task completion 

time between different control modes. 

 
Index Terms—Gesture recognition, particle filter, dynamic 

time warping, CONDENSATION, one shot learning. 

I. INTRODUCTION 

 

Ssistive technologies is about finding new ways to 

engage cutting-edge technologies in support of individuals 

with physical and/or cognitive impairments. The development 

of technologies relying on high usability principles, exploited 

new communicational channels such as eye blinking, voice, 
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hand gestures, sip and puff, and electromyogram (EMG) as 

effective control modalities [1]. These channels have led to 

ingenious interfaces in support of the disabled [2], such as 

intelligent wheelchairs systems, home medical alert systems, 

and assistive robotic control, to mention a few [3, 4, 5]. These 

interfaces offer additional degrees of mobility and control 

which were not possible previous to these developments, 

leading to a higher life quality and sense of independence.  

Among all these interaction channels, hand gestures is a 

valuable alternative since it does not require to have the user 

tethered through cables or sensors, and it only requires 

learning a few customized gestures for a given task. In 

particular, upper extremity gesture control can serve as an 

important human computer interaction (HCI) modality for 

individuals with quadriplegia who lack hand fine motor skills. 

For instance, upper limb gesture control requires less targeting 

accuracy than joysticks, the mouse, and other continuous input 

devices. Likewise, the option to employ either continuous or 

discrete input control modes reduces the effort required for 

individuals with quadriplegics to perform navigational 

operations [6]. Unlike voice control, gesture control is 

effective in noisy environments [7]. In addition, for most of 

the cases, individuals with quadriplegic can only use gross 

motor function instead of fine motor function to perform 

certain tasks [8]. Apart from other common modalities, such 

as keyboard and joystick that require fine motor control to hit 

a key or move and twist a handle, upper extremity gesture 

control only requires gross motor function for targeting and 

navigational tasks [9]. Lastly, hand gesture based HCI is 

unencumbered because it does not require the user to directly 

contact or wear sensors as sip-and-puff and EMG based 

systems [10, 11]. While not every individual with upper 

extremity mobility impairments can use hand gesture control 

reliably, for those who are able to move their arms to some 

degree, gesture-based HCI can be seen as a promising 

alternative or complement to an existing control modality. 

In our previous work [12], a prototype of gesture 

recognition based interface was developed for people with 

upper extremity mobility impairments. In the current 

manuscript, the tracking algorithm was greatly improved and 

compared with five state-of-art algorithms to demonstrate a 

better tracking performance. Further, more experimental 

results were provided with subjects with upper extremity 

mobility impairments and one shot learning was employed to 

allow instant customization of the gestural system. Face and 

hand tracking under frequently self-occlusion was modeled as 

Hairong Jiang, Bradley S. Duerstock, Juan P. Wachs 

 A Machine Vision based Gestural Interface for 

People with Upper Extremity Physical 

Impairments 

A 

mailto:bsd@purdue.edu


IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS 

 

2 

a multi-object tracking (MOT) problem. This problem is 

challenging since hands are non-rigid objects and their form 

varies among individuals, while performing a certain 

candidate gesture. Additionally, since the appearance of the 

left and right hand are similar for the same individual, trackers 

can focus on one hand or exchange positions when the hands 

are too close to each other. In this paper, an integrated 

approach was proposed to tackle the challenging problem of 

tracking under self-occlusion.  

A. Related Work 

Often, hand gesture recognition involves segmentation of 

the hands, tracking them through occlusion, and the 

classification of hand’s dynamic trajectories and static pose. 

For vision-based real-time gesture based interfaces for 

assistive technologies, robustness is a critical requirement [13] 

for its adoption. For hand segmentation, a commonly used 

method is to back-project the pre-built skin color histogram 

model into new video frames. These methods are likely to fail 

in true world conditions, where illumination is uncontrolled 

and the background is cluttered. Adding depth information can 

relax at some extent the problem, by utilizing stereo vision 

[14] or other depth commodity sensors, such as Kinect™ [15] 

or Leap Motion® [16].  

Face and hands tracking is a special case of MOT problem. 

If gestures in the lexicon only carry trajectory information, 

(the hand shape does not convey extra information), classical 

tracking approaches can be adopted. For example, 

CAMSHIFT [17] and CONDENSATION [18] have been 

shown to successfully track gestures; however they are 

susceptible to lose the tracked objects when occluded by new 

objects, or when the scene illumination changes. Another 

widely used technique for object tracking is particle filters 

[19]. Perez et al. [20] integrated color-based appearance 

models to a particle filter framework to enhance tracking 

under complex background and occlusion, and then applied 

the particle filter framework to multiple objects tracking. 

Okuma et al. [21] further extended particle filters by 

incorporating a boosting detector and enabling automatic 

initialization of potential multiple targets. One problem of 

these techniques is that the interaction between the tracked 

objects (and occlusion) was not considered part of the main 

framework. When the objects interact one with the other, 

occlusions occur frequently. Local motion information was 

incorporated into a color-based particle filter framework by 

Kristan et al. [22] to solve the self-occlusion problem through 

object tracking. Qu et al. [23] combined a joint state space 

representation with color-based particle filter and performed 

joint data association in a multi-object tracking scenario. All 

the discussed algorithms so far, attempted to solve the MOT 

problem; however they presented limited performance when 

tracking multiple non-rigid similar objects.  

With the advent of Kinect™ and other 3D sensors, hand or 

body tracking techniques in real-time were exploited. Eichner 

et al. [24] presented a technique to estimate the body layout of 

humans by using still images. Their approach is capable of 

estimating upper body pose in highly uncontrolled 

environment. Further, Yang et al. [25] described a method to 

estimated human pose from static images using body part 

models. By using the depth information, Shotton et al. [26] 

proposed a method to predict 3D positions of body joints from 

a single depth image. They solved the pose estimation 

problem through a simple per-pixel classification problem. A 

similar method is also used by OpenNI for human body 

skeleton tracking. One problem of these skeleton-based 

tracking methods is that they work well when users are 

standing with their extremities extended, but suffer sudden 

performance degradation for seated users with contracted 

limbs, as often occur with quadriplegic individuals.  

Only color and depth information captured from Kinect™ 

were adopted for hand tracking by Oikonomidis et al. [27]. 

They presented a method to track the full articulation of two 

hands that interact with each other in an uncontrolled manner.  

This method is effective for static gesture recognition; 

however, the computation cost is excessive which affects its 

real-time extension for gesture tracking. 

One of the most widely used techniques for gesture 

recognition is Hidden Markov Models (HMM) [28, 29, 30].  

Common problems with HMM approach consist of finding the 

optimal parameters set (e.g. initial probabilities) and trajectory 

spotting for gesture temporal segmentation. Black and Jepson 

[31] proposed a CONDENSATION-based trajectory gesture 

recognition algorithm that can obtain less sensitive parameters 

set and achieve robust tracking, yet gesture temporal 

segmentation was not fully addressed. Alon, et al. [32] applied 

the dynamic time warping (DTW) approach to gesture 

recognition and look at sub-gestures composition to solve the 

temporal segmentation problem (also known as “spotting”). 

Interaction between hands was not specifically tackled.  

Recently, a new type of challenge was attracted the 

attention of the gesture recognition community – the “One 

Shot Learning” Challenge [33]. The one shot learning [34] 

consists of learning a gesture category by only observing one 

instance of that gesture, similar to how humans learn. In this 

context, Wu et al. [35] adopted the extended-motion-

histogram image for motion feature representation and applied 

it to segment and classify hand gestures.  Yang et al. [36] 

proposed discovering high level sub-actions by clustering 

optical flow in four dimensions (RGB-D). In our work, one 

shot learning provides an interesting test-bed to demonstrate 

the robustness of our approach, compared with the state of the 

art [37].  

In the current paper, we also extended our method to robotic 

control. One advantage of using hand gestures to control 

robots is that it provides a natural way for navigational tasks 

by sending navigational information (e.g. left, right, forward 

and backward commands [38]). 

B. Outline of Our Approach 

In this paper, an interaction model was incorporated to the 

color histogram based particle filter framework to track hands 

through interaction and occlusion. A procedure was proposed 

to create dynamic motion models by DTW method and 

classify input gesture trajectories using the CONDENSATION 
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algorithm. The system was integrated in a simplistic yet robust 

fashion by combining CONDENSATION algorithm with an 

interaction model-based particle filter, which makes it suitable 

for human robot interaction in assistive technologies. 

The contribution of this paper is three-fold: (1) prove the 

effectiveness of hand gestures as an alternative modality for 

individuals with mobility impairments by both subjective 

explanation and quantified results; (2) solve the frequently 

hand gesture interaction and occlusion problem through 

integration of color and 3D spatial information as an 

interaction model; (3) new gestures can be created and learned 

through the one shot learning paradigm, leading to an almost 

effortless training process (a necessary attribute for subjects 

with severe spinal cord injuries). 

The paper is organized as follows: In Section II, the 

architecture is presented for the gesture recognition system. In 

Section III, the approach suggested to track and recognize 

dynamic hand gestures is discussed in details. In Section IV, 

comparative tests and results are presented, Section V 

discusses and concludes the paper, and Section VI presents 

future work. 

II. SYSTEM ARCHITECTURE 

The architecture of the proposed system is illustrated in Fig. 

1. Eight gestures were selected to constitute the gesture 

lexicon which in turn was used to control the robots. The 

machine vision based gestural system included four parts: 

foreground segmentation, face and hand detection and 

tracking, hand trajectory classification, and robotic control 

policies. Those parts were described in the following sections.  

A. Foreground Segmentation 

In foreground segmentation section, the background was 

ruled out from the captured frames and the whole human body 

was kept as the foreground. 

B. Face and Hand Detection and Tracking 

Face and hand detection was to initialize the position of the 

face and hands for the tracking phase. After initialization, both 

face and hands were tracked through video sequences by 

particle filter method. 

C. Hand Trajectory Classification 

Hand tracking results were segmented as trajectories, 

compared with motion models, and decoded as commands for 

robotic control. 

D. Robotic Control Policies 

The commands decoded by gesture recognition results were 

sent to control the mobile robot and the robotic arm. 

III. GESTURE RECOGNITION 

A. Foreground Segmentation 

Initially, the user’s body was treated as a foreground object 

in order to detect the user’s movements. Two steps were used 

to segment the foreground (refer to algorithm 1 in TABLE I).   

In the first step, the sensed image assessed by a Kinect™ [15] 

sensor was thresholded using depth information. The depth 

value of each pixel was defined as D(i, j) with i and j 

indicating the horizontal and vertical coordinates of the pixel 

in each frame of the video sequence. An example of a depth 

image is shown by Fig. 2(a), where the distance between 

objects and the depth sensor was mapped to intensity levels. 

The nearer the object was to the sensor, the larger the intensity 

was. Two absolute depth thresholds (a low threshold TDL and a 

high threshold TDH) were custom set by the user according to 

their relative distance to the depth sensor. TDL was set to no 

less than a constant which was the minimum distance that can 

be registered by the depth sensor (due to its physical 

limitations). TDH was set to be the maximum distance that can 

be reached by the user while seated in a wheelchair1. In this 

paper, TDL and TDH were set to be 0.4m and 2.0m to achieve an 

                                                           
1 These values are selected since they resulted in the best performance; 

other thresholds can be used and the impact on the overall performance is 
likely to be negligible. 
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optimal performance for segmentation. A mask image (Fig. 

2(b)) was generated by keeping the pixels with a depth value 

between the two thresholds while discarding the others. In the 

second step, the region (blob) with the largest area (denoted 

as𝑇𝑆𝐻) was extracted from the mask image. All the remaining 

blobs with an area smaller than TSH were discarded (Fig. 2(c)). 

If the extracted region contained an object that were not part 

of the user’s body, it would be discarded in a later stage since 

tracking was achieved based on both color and spatial 

information. 
TABLE I 

FOREGROUND SEGMENTATION ALGORITHM 

Algorithm 1: Foreground Segmentation 

Input: Low depth threshold TDL; High depth threshold TDH; pixel value 
of depth Image D(i, j);  

Output: pixel value of mask image D1(i, j); pixel value of foreground 

mask image D2(i, j). 

    D1(i, j) = {
  1:  𝑇𝐷𝐿 ≤ 𝐷(𝑖, 𝑗) ≤ 𝑇𝐷𝐻

 0:                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

    TSH = max(Area(Bi))                 //Bi is the ith blob in the mask image D1 

𝐷2(𝑖, 𝑗)  =  {
    1:      𝐷1(𝑖, 𝑗) ∈ 𝐵𝑖  & 𝐴𝑟𝑒𝑎(𝐵𝑖) == 𝑇𝑆𝐻

    0:                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 
                     (a)                                    (b)                                     (c) 

Fig. 2. Foreground Segmentation. (a) Depth image; (b) Depth threshold 

mask; (c) Foreground segmentation mask. 

B. Face and Hand Detection 

In this section, the centroids of the face and hand regions 

were extracted to initialize the tracking stage. Two 3D 

histograms - a skin and a non-skin color histogram were 

created using Compaq database [39] and HSV color space to 

achieve higher robustness for skin color detection (referred to 

[12] for a detailed description). The mask image obtained 

from histogram back-projection is shown as in Fig. 3(a). To 

obtain the hand regions without the face, a face detector [40] 

was adopted (Fig. 3(c)) to remove the region from the target 

image. Two largest blobs in the target image were then 

selected as hand regions (Fig. 3(b)). The centroids of the 

hands were obtained by computing the first moment of the two 

blobs. This hand detection procedure was only used to provide 

automatic initialization to the particle filter tracking 

procedure. Afterwards the hands positions were continuously 

tracked by the particle filter.  

 

 
                      (a)                                    (b)                                    (c) 

Fig. 3. Face and hand detection. (a) Skin color detection; (b) Hand 

extraction; (c) Face and hand localization. 

C. Face and Hand Tracking 

A 3D particle filter framework based on color, depth and 

spatial information was used to track the face and hands 

through video sequences. A detailed description of the particle 

filter algorithm was illustrated in [20, 41, 42]. The equation of 

particle filtering is given as in (1): 

 

𝑝(𝑋𝑡|𝑍1:𝑡) = 𝑘 ∙ 𝑝(𝑍𝑡|𝑋𝑡) ∫ 𝑝(𝑋𝑡|𝑋𝑡−1) 𝑝(𝑋𝑡−1|𝑍1:𝑡−1)𝑑𝑥𝑡−1(1) 

 

where 𝑋𝑡  is the process state at time t, 𝑍1:𝑡 = {𝑍1, … 𝑍𝑡} 

denotes the set of observations from time 1 to t, 𝑝(𝑋𝑡|𝑍1:𝑡) and 

𝑝(𝑍𝑡|𝑋𝑡) expresses the posterior and prior distribution at time 

t, 𝑝(𝑋𝑡|𝑋𝑡−1) is the transition probability of the system at state 

𝑋𝑡  given that the previous state was 𝑋𝑡−1 , and k is a 

normalization factor to normalize the sum of all posterior 

probability to 1. In the particle filter algorithm, N weighted 

particles can be used to approximated the posterior as: 

𝑝(𝑋𝑡−1|𝑍1:𝑡−1) ≈ {𝑋𝑡−1
𝑟 , 𝜔𝑡−1

𝑟 }𝑟=1
𝑁 , where 𝜔𝑡−1

𝑟  denotes the 

weight of the particle r at time t-1. After propagation, the 

tracker output at time t can be approximated by the 

expectation of the process state:  �̂�𝑡 ≈ 𝐸[𝑋𝑡|𝑍1:𝑡] =
 ∑ 𝜔𝑡

𝑟𝑋𝑡
𝑟𝑁

𝑟=1 . Thus, (1) is converted to (2): 

 

𝑝(𝑋𝑡|𝑍1:𝑡) ≈ 𝑘 ∙ 𝑝(𝑍𝑡|𝑋𝑡) ∑ 𝜔𝑡
𝑟𝑝(𝑋𝑡

𝑟|𝑋𝑡−1
𝑟 )𝑁

𝑟=1  (2) 

 

The particles were initialized by using the centroids of face 

and hands calculated in section III. B. 

The particle filter tracking process consists of three main 

phases: predicting, measuring and re-sampling. In the 

proposed system, for the predicting phase, a second order 

auto-regressive (AR) model (as in (3)) [20, 41] was selected to 

model the dynamic motion of each particle: 

 

𝑋𝑡
𝑟 = 𝐴1(𝑋𝑡−1

𝑟 − 𝑋0
𝑟) + 𝐴2(𝑋𝑡−2

𝑟 − 𝑋0
𝑟) + 𝑋0

𝑟 + 𝐵𝜈𝑡  (3) 

 

Where 𝜈𝑡~𝒩(0, 𝛴) is a Gaussian distribution with zero mean 

and variance matrix Σ, X0 is the original particle coordinate, 

A1, A2, and B are the optimal parameter matrices that can best 

match the real motion of the tracked object, 𝑋𝑡
𝑟 is the state of 

the particle r at time t. In this paper, a 3D particle filter 

tracking was adopted. The state of particle r at time t is written 

as: 𝑋𝑡
𝑟 = [𝑥𝑡

𝑟 , 𝑦𝑡
𝑟 , 𝑧𝑡

𝑟 , 𝑠𝑡
𝑟 , 𝑥𝑡−1

𝑟 , 𝑦𝑡−1
𝑟 , 𝑧𝑡−1

𝑟  ], where 𝑠𝑡 is the scale 

of object at time t, 𝑥𝑡
𝑟 , 𝑦𝑡

𝑟 , 𝑧𝑡
𝑟 are the 3D coordinates of particle 

r at time t, and 𝑥𝑡−1
𝑟 , 𝑦𝑡−1

𝑟 , 𝑧𝑡−1
𝑟  are the 3D coordinates of 

particle r at time t-1. 

For the measuring phase, the selection of the observation 

model determines the weight of the particles. Many 

appearance-based models, such as contour, edge, piece-wise, 

etc, were used in object tracking. Color-based pre-processing 

using HSV space can facilitate the extraction of the 

aforementioned features for face and hands tracking. As 

explained earlier, the initial phase of the face and hands were 

determined by the combination of depth-based thresholding 

and image processing techniques. The extracted face and 

hands regions were used to compute the reference HSV 

histogram models (Hf
*, Hh1

*, and Hh2
*) for tracking 

initialization. During the re-sampling phase, each particle, 

assigned in the predicting phase, was reweighted by the 

observation likelihood function. For every hypothesized face 
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or hand location of a particle r, the candidate histograms were 

computed as 𝐻𝑓
𝑟 , 𝐻ℎ1

𝑟 ,  and 𝐻ℎ2
𝑟 . The Bhattacharyya distance 

[20] D was used to measure similarity between reference and 

candidate histograms as (4):  

 

𝐷𝑖(𝐻∗, 𝐻𝑟) = [1 − ∑ √𝐻𝑖
∗𝐻𝑖

𝑟]
1

2 (4) 

 

where 𝐻𝑖
∗ = 𝐻𝑓

∗, 𝐻ℎ1
∗ , 𝑜𝑟 𝐻ℎ2

∗ and 𝐻𝑖
𝑟 = 𝐻𝑓

𝑟 , 𝐻ℎ1
𝑟 , 𝑜𝑟 𝐻ℎ2

𝑟 . The 

observation likelihood function can be written as (5): 

 

𝑝(𝑍𝑡|𝑋𝑡) ∝ 𝑒𝑥𝑝 (−𝜆1(𝐷𝑖
𝑟)2)                                       (5) 

 

where 𝜆1 measures the variance of the HSV histogram. (5) can 

be re-written by adding a normalization factor k to normalize 

the sum of all particles’ weight to 1, obtaining (6): 

 

𝑝(𝑍𝑡|𝑋𝑡) = 𝑘 ∙ 𝑒𝑥𝑝 (−𝜆1(𝐷𝑖
𝑟)2) (6) 

 

D. Hand Tracking Through Interaction and Occlusion 

Color-based particle filter tracking was effective for 

multiple independent objects tracking when the objects did not 

interact or occlude each other. However, if interaction or 

occlusion occurs, multiple independent particle filters can be 

used. Standard multi-object tracking (MOT) with interaction 

and occlusion suffers from the “false merging” and “false 

labeling” problems [23]. The “false merging” problem denotes 

the situation that the tracker shift from the object being 

tracked to a different object that has higher observation 

likelihood. Conversely, the “false labeling” problem denotes 

the situation that the objects being tracked exchange their 

labels after interaction or occlusion occurred. In the proposed 

system, the face and both hands were tracked. 

In this paper, two models were constructed to solve “false 

merging” and “false labeling” problems separately. The first 

model was called the “Competition Potential” (CP) model. 

The idea of this model comes from the Joint Markov random 

fields (MRF) theory [42]. The likelihood function for CP 

model is defined as ψ1(𝑋𝑖,𝑡 , 𝑋𝑗,𝑡) , which represented the 

pairwise interaction potential of the MRF [43]. The second 

model is called “Motion Consistency” (MC) model. The 

likelihood function for MC model is defined as ψ2(𝑋𝑖,𝑡 , 𝑋𝑗,𝑡), 

which is based on the assumption that a particle region that 

has similar motion information to the previous state of that 

particle will have higher probability than a particle region that 

has distinct motion information. 

For CP model, as in [43], we have 𝑝(𝑋𝑡|𝑋𝑡−1) ∝

∏ ψ1(𝑋𝑖,𝑡 , 𝑋𝑗,𝑡)𝑖,𝑗∈𝐸 ∏ ψ1(𝑋𝑖,𝑡 , 𝑋𝑗,𝑡).𝑖,𝑗∈𝐸 The particle filter 

function (2) can be rewritten as (7): 

 

𝑝(𝑋𝑡|𝑍1:𝑡) = 𝑘 ∙

𝑝(𝑍𝑡|𝑋𝑡) ∏ 𝜓1(𝑋𝑖,𝑡 , 𝑋𝑗,𝑡)𝑖,𝑗∈𝐸 ∑ 𝜔𝑡−1
𝑟

𝑟 ∏ 𝑝(𝑋𝑖,𝑡|𝑋𝑖,𝑡−1
𝑟 )𝑖   (7) 

 

The likelihood function for CP model is then defined as: 

 

𝜓1 𝑖,𝑡
𝑟 (𝑋𝑖,𝑡, 𝑋𝑗,𝑡)  = 𝛽1 ∙ exp (−

𝜆2

𝑑(𝑋𝑖,𝑡
𝑟 ,𝑋𝑗,𝑡)

2) ∙

exp (−𝜆3𝑑(𝑋𝑖,𝑡
𝑟 , 𝑋𝑗,𝑡−1)

2
) ∙ exp (−

𝜆4

𝑑𝑧(𝑋𝑖,𝑡
𝑟 −𝑋𝑗,𝑡)

2) (8) 

 

where 𝑑(𝑋𝑖,𝑡
𝑟 , 𝑋𝑗,𝑡) denotes the 2D Euclidean distance metric 

between two objects, 𝑑(𝑋𝑖,𝑡
𝑟 , 𝑋𝑖,𝑡−1)  represents a distance 

metric between the previous and current centroid of object i, 

𝑑𝑧(𝑋𝑖,𝑡
𝑟 − 𝑋𝑗,𝑡) represents the difference of depth value 

between two objects, and 𝛽1 is a normalization factor so the 

sum of all particles’ weight is 1.  

MC model was used to solve the “false labeling” problem. 

The 3D motion information was incorporated into the original 

likelihood function to increase the robustness of the method. 

We adopted a compact expression of the likelihood function 

similar as in [23], which integrated the magnitude and 

direction information of motion as (9). Instead of using 2D, 

3D motion features are used to compute the motion 

information of the hand movement. The likelihood function 

for the MC model is defined as: 

 

𝜓2 𝑖,𝑡
𝑟 (𝑋𝑖,𝑡 , 𝑋𝑗,𝑡) = 

𝛽2 ∙ 𝑒𝑥𝑝(−𝜆5 (𝜃𝑡
𝑟)2) ∙ 𝑒𝑥𝑝 (−𝜆6 (𝐴𝑡

𝑟 − 𝐴𝑟𝑒𝑓,𝑡)
2

) (9) 

 

where 𝐴𝑡
𝑟  and 𝐴𝑟𝑒𝑓,𝑡  represent the norm of 3D motion vector 

and reference motion vector (can be computed by the 

difference of the current and the previous 3D position vector) 

of particle r at state t, respectively., 𝜃𝑡
𝑟 is the angle between 

the 3D motion vector of particle r and the reference vector and 

𝛽2  is a normalization factor to normalize the sum of all 

particles’ weight to 1. This likelihood function assumes that a 

particle region that has a similar motion to the previous state 

will have a larger weight than one with a different motion.  

When the objects’ observations do not interact with each 

other, the approach suggested behaves as if multiple 

independent trackers were applied to the objects (Fig. 4(a)). 

However, when the objects’ observations interact (e.g. partial 

or complete occlusion occurs), the conventional particle filter 

framework is extended (Fig. 4(b), (c)). The decision of when 

the objects interact is made based on the interdistance between 

the hands. When this distance is below a certain threshold, the 

system switches to the interaction model (Fig. 4).  To find the 

optimal threshold, a histogram of the number of tracking 

frame errors at each distance is obtained (Fig. 5) and the 

threshold is selected so the tracking errors are minimized 

when the interaction model is activated. Note, a dramatic 

decrease of error, at the distance around 50 pixels at which 

hand interaction frequently occurred. The threshold T was 

determined according to the distribution of errors in the 

histogram. The extension models were given through (8) and 

(9). The parameters 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, and 𝜆6 in (6), (8) and (9) 

were optimized by utilizing a neighborhood search method 

[38]. The algorithm for hand tracking during interaction and 

occlusion is shown by TABLE II. 
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               (a)                                      (b)                            (c) 

Fig. 4. Dynamic motion analysis. (a) independent object tracking; (b) 

interaction model added; (c) objects occlusion occurs. 

 
Fig. 5. Number of error tracking frames for each distance before and 

after the addition of interaction model. 

 

TABLE II 

HAND TRACKING THROUGH INTERACTION AND OCCLUSION 

Algorithm 2: 3D Particle Filter tracking 

Input: Reference HSV histogram models 𝐻𝑓
∗, 𝐻ℎ1

∗ , and 𝐻ℎ2
∗ ; Optimal 

parameter 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6. 
Output: Centroids and the associated bounding box of the face and hands.   

1. Initialize: 

//Initialize particle states and weight for face and both hands as:  

    𝑥0
𝑖 = 𝑥0

∗ ,   𝜔0
𝑖 =

1

𝑛
 ,       where  i = 1,…,n 

2. Predict, Measure and Resample: 

//Select k;  
for i=1,2,3 //(1-face, 2-right hand, 3-left hand) 
     for r=1 to N 

           𝑥𝑖,𝑡
𝑟 = 𝐴1(𝑥𝑖,𝑡−1

𝑟 − 𝑥0
𝑖 ) + 𝐴2(𝑥𝑖,𝑡−2

𝑟 − 𝑥𝑖,0
𝑟 ) + 𝑥𝑖,0

𝑟 + 𝐵𝜈𝑡  

           //Compute candidate histograms 𝐻𝑟 

           𝐷𝑖(𝐻∗, 𝐻𝑟) = [1 − ∑ √𝐻∗𝐻𝑟]
1

2 

           //Calculate the weight: 

           𝜔𝑖,𝑡
𝑟 = 𝑘 exp (−𝜆𝐷𝑖,𝑡

2 ) 

      end for 

      Normalize the weights  and resample the particles 

      Estimate 𝑥𝑖,𝑡 =  ∑ 𝜔𝑖,𝑡
𝑟 𝑥𝑖,𝑡

𝑟𝑁
𝑟=1  

      //Check interaction 
      if interactions happens for object i and j 

           for q=1,…,N 

                //computer interaction likelihood ψ1 and ψ2:  

                Compute  ψ1 i,t
q (Xi,t

q
, Xj,t

q
) and ψ2 i,t

q (Xi,t
q

, Xj,t
q

) using (8) and (9) 

                //Calculate the weight: 

                𝜔𝑖,𝑡
𝑞

=  𝜔𝑖,𝑡
𝑞

 ∙ ψ1 i,t
q  ∙ ψ2 i,t

q
 

            end for 

            Normalize the weights and resample the particles. 

            Estimate 𝑥𝑖,𝑡 =  ∑ 𝜔𝑖,𝑡
𝑟 𝑥𝑖,𝑡

𝑟𝑁
𝑟=1  

       end if 

end for 

E. Gesture Lexicon 

A gesture lexicon was designed such that users will physical 

impairments can perform the gestures with minimal effort. 

These gestures were found through a series of interviews 

conducted with subjects with upper mobility impairments. 

Borg Scale [44] was used to rank the physical stress required 

to perform a gesture by participants with upper mobility 

impairments. An eight-gesture lexicon (see Fig. 6) was then 

constructed by analyzing the Borg Scale results collected from 

the subjective rankings and selecting those corresponding to 

the least required effort. A detailed description of the process 

for gesture lexicon construction can be referred to [45]. 

          
             (a)                          (b)                       (c)                           (d) 

         
                (e)                         (f)                        (g)                           (h) 

Fig. 6. Gesture lexicon. (a) upward; (b) downward; (c) rightward; (d) 

leftward; (e) counter-clockwise circle; (f) clockwise Circle; (g) S; (h) Z. 

F. Hand Trajectory Classification 

For each frame in the video sequence, the centroids of the 

face and hands were obtained from the tracking stage. The 

motion model for each gesture trajectory was created based on 

the data collected from gestures performed by ten subjects. 

Two of the pool of ten subjects were quadriplegic due to a 

cervical spinal cord injury.  

Even though the trajectories for each gestures performed by 

different subjects or the same subject in different instances 

may look similar, the precise duration of each sub-trajectory 

within the trajectory were different. To normalize the 

trajectories (temporal alignment), dynamic time warping 

(DTW) was employed [46]. The velocities’ components in 

horizontal, vertical and depth directions of both hands were 

selected as the feature components for each motion model 

[41]. The procedure to construct the motion models is 

described in our previous work [12].  

The CONDENSATION (Conditional Density Propagation) 

algorithm [31] was employed to classify hand gesture 

trajectories in the lexicon (as in Fig. 6). It employs a set of 

weighted samples instead an equation to fit the observed data. 

The original algorithm in [31] was extended to work for two 

hands. The original expression St = (𝜇, 𝜙, 𝛼, 𝜌) (the state at 

time t) was extended to: 

 

St = (𝜇, 𝜙𝑖 , 𝛼𝑖, 𝜌𝑖 ) = 

(𝜇, 𝜙𝑟𝑖𝑔ℎ𝑡 , 𝜙𝑙𝑒𝑓𝑡 , 𝛼𝑟𝑖𝑔ℎ𝑡 , 𝛼𝑙𝑒𝑓𝑡 , 𝜌𝑟𝑖𝑔ℎ𝑡 , 𝜌𝑙𝑒𝑓𝑡  )                        (10) 

 

where, μ is the index of the motion models, 𝜙 is the current 

phase in the model, 𝛼 is an amplitude scaling factor, 𝜌 is a 

time dimension scaling factor, and i ∈{right hand, left hand}. 

The gestures in the lexicon (as in Fig. 6) were spotted using 

a rest position gesture (when the subjects put their hands on 

the arm rest (neural position) with no hands movement). A 

dynamic motion model was created for the rest position 

gesture. The segment between two recognized discontinuous 

rest position gestures is treated as a spotted gesture. 
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G. Gesture Customization (One Shot Learning) 

One of the objectives of our prototype follows the “came 

as you are” paradigm [13], where new gestures can be learned 

by the system automatically or by observing only one instance 

of it. The reason for this is to reduce the level of effort 

involved in the training phase of the system.  In this section, 

we validated our approach in the context of one shot learning 

to assess the ability of the system to generalize learning from 

very few observations. A Savitzky-Golay smoothing filter [47] 

was added to smooth the 3D trajectories during the creation of 

the motion models. Two new gestures (see Fig. 7) were added 

to the lexicon to offer another degree of navigational control. 

 
                      (a)                                              (b) 

Fig. 7. Extended lexicon. (a) clockwise circle in horizontal plane; (b) 

counter-clockwise circle in horizontal plane. 

IV. EXPERIMENTS AND RESULTS 

A. Experiment 1: Hand Tracking Performance 

 A dataset of 16 videos (4 subjects x 4 activities) was used 

to evaluate the proposed tracking algorithm. The videos were 

captured with a Kinect™ camera at 30Hz using an image size 

of 640×480. Among the 4 subjects, three were able-bodied 

individuals and one was an individual with Cervical-6 level 

quadriplegia. The 4 activities performed by the subjects were: 

(a) “holding a cup”, (b) “clapping hands”, (c) “moving one 

hand up and down” (to occlude the other hand), (d) “rotating 

two hands forward and backward” (to occlude each other). 

The total number of frames for all the videos was 6080, while 

the total number of interactions between the two hands was 

157. The total number of frames of each video corresponding 

to each of the four activities was: 930, 2230, 1320, and 1600, 

respectively (two sample sequences are shown in Fig. 17 and 

18 in appendix). The ground truth position of the left and right 

hands in each video was provided by manually hand labeling.  

The local likelihood 𝑝(𝑧𝑡
𝑖|𝑥𝑡

𝑖) was calculated using the 3D 

color histograms and two interaction models as the algorithm 

mentioned in TABLE II. The performance of the proposed 

method – competition potential and motion consistency 

(CPMC) - was compared to other existing methods such as: (i) 

Markov Chain Monte Carlo (MCMC) based particle filter 

tracking [43], (ii) Magnetic-Inertial based particle filter 

tracking [23], (iii) ETH skeleton tracking based on color or 

depth frames [24], (iv) Body-parts tracking based on color or 

depth frames [25], and (v) Kinect™ OpenNI SDK skeleton 

tracking [48]. For the method (i), (ii), and the proposed 

method, 100 particles were used for face and each hand 

tracking. For methods (iii), (iv) and (v), the number of body 

parts (segments of a human body, i.e. hand, head, leg, and part 

of the arms) being tracked were: 6, 26, and 16, respectively. 

For the method (iii), only the upper body parts were tracked. 6 

parts were used. Since the focus was on hand tracking, the 

results of two hands interaction for all the activities are shown 

as in TABLE III. 

The tracking performance of these algorithms was 

evaluated by employing three metrics: false merging, false 

labeling and tracking accuracy. The “false merging” is defined 

as the situation where the tracker of one hand occupies 80% of 

the area of the other hand. The “false labeling” is defined as 

the situation where the trackers of both hands change positions 

during/after interaction or occlusion. The “tracking accuracy” 

is defined by (11): 

 

𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠
         (11) 

 

where a true positive is defined as the situation whereas a 

target object is present and the tracker was able to find it. True 

negatives are instances where the target object is not present 

and the tracker also agreed that the object was absent [47]. 

TABLE III shows that the proposed algorithm (CPMC) 

exhibits the best performance for the interaction and occlusion 

conditions among the three particle based methods. There is a 

marginal decrease in the algorithm speed. When there is no 

interaction or occlusion occurring, CPMC has the same speed 

as MCMC and MI approaches. Comparing to the skeleton 

tracking [24, 48] and body part tracking method proposed by 

[25], the proposed method obtained higher tracking accuracy. 

Since our targeting user group is individuals with upper 

mobility impairments, two challenges exist for hand tracking 

in the proposed system that could not be tackled very well by 

skeleton based or other articulated pose tracking method. One 

challenge is that the users with upper extremity mobility 

impairments need to sit most of the time on a wheelchair and 

TABLE III 

HAND TRACKING PERFORMANCE 

Method False Merging 

(6080 Frames)  

False Labeling  

(157 Interactions) 

Tracking 

Accuracy (%) 

Particle 

Number 

Number of  

Body Parts 

MCMC [41] 568 33 74.87 100 -- 

MI [23] 323 20 82.58 100 -- 

ETH (color) [24] 11 4 74.80 -- 6 

ETH (depth) [24] 0 3 58.25 -- 6 

Body Part (color) [25] 72 33 64.80 -- 26 

Body Part (depth) [25] 220 14 27.58 -- 26 

Kinect Skeleton [48] 0 3 73.87 -- 16 

CPMC(Proposed) 1 4 97.52 100 -- 
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perform limited space hand gestures. Their hands could be 

very close to the body when they perform the gestures. The 

tracking method based purely on depth information could 

easily lose track when the hands are so close to the torso [24, 

25]. The second challenge is that most of the wheelchairs have 

armrest, which can be easily confused with human arms and 

hands. This can explain why the skeleton based tracking 

method ((iii) and (v)), and the articulated pose tracking 

method (iv) does not work well for our dataset.  

The values of the performance metrics “false merging” and 

“tracking accuracy” versus the distance between left and right 

hands are shown in Fig. 8, and Fig. 9.  From Fig. 8, we can see 

that the proposed approach outperforms method (i), (ii), (iv), 

and method (iii) (with color images). Additionally, the result 

of the proposed approach (1 false merging frame) were very 

close to the results of method (iii) (with depth images) and 

method (v) (no false merging occurred). In Fig. 9, the total 

number of false positive and false negative frames versus the 

hands’ interdistance was presented for each method. This 

figure showed that the proposed approach outperformed all the 

other state of art algorithms, since it displayed the fewest 

number of false positive and false negative frames among all 

the algorithms for nearly all distances. 

 
Fig. 8. Number of “false merging” occurred vs. hand distance. 

 

 
Fig. 9. Number of false positive and false negative vs. hand distance. 

B. Experiment 2: Gesture Recognition Performance 

The motion models were constructed using the DTW 

algorithm. The velocities (3D directions) of right and left 

hands were used as the main feature components. The gesture 

lexicon in Fig. 6 was adopted, and those gestures were used to 

create spatio-temporal trajectories that later were classified by 

the gesture-based recognition system.  

The system was validated by eight able-bodied subjects and 

two subjects with quadriplegia due to cervical spinal cord 

injuries aged around 24-40. The ten subjects performed all the 

gestures in the lexicon each ten times (8 gestures x 10 subjects 

x 10 repetitions). Ten sessions were used for cross validation 

for each gesture (k-fold with k=10). In each session, 720 

observations (8 gestures x 9 subjects x 10 repetitions) were 

used for training and 80 gestures (8 gestures x 1 subject x 10 

repetitions) were used for testing. This cross validation 

resulted in an average accuracy of 95.9%. A confusion matrix 

was computed and shown by Fig. 10 (with a temporal window 

size of w=19). Confusions occurred when the subjects 

performed a gesture mistakenly in a single direction or not 

enough motion was exhibited as expected in other directions. 

Other cases of misclassification occurred when two gestures 

shared similar sub-trajectories (i.e, counter clock and S 

gestures). 

 
Fig. 10. Confusion matrix with window size of w=19. 

 

The recognition performance for the CONDENSATION 

algorithm with our training procedures (CONDENSE) was 

compared to four other existing state-of-the-art recognition 

algorithms: (i) Basic motion [50]; (ii) Motion based PCA [51]; 

(iii) Dynamic time warping (DTW) [52], and (iv) Hidden 

Markov Model (HMM) [28]. After applying each gesture 

recognition method to our data set, the results shown in 

TABLE IV were obtained. The confusion matrices for the 

different methods are shown in Fig. 11, Fig. 12, Fig. 13 and 

Fig. 14 respectively. Method (i), (ii), and (iii) used motion 

information to recognize hand gestures, while (iv) and the 

CONDENSATION method recognized hand gestures by 

extracting and classifying hand trajectories. The comparison 

results demonstrate a high recognition accuracy for the 

trajectories classification based method. HMM based 

recognition method can get comparable results as the method 

used in our paper.  
TABLE IV 

GESTURE RECOGNITION PERFORMANCE 

Method Basic PCA DTW HMM CONDENSE 

Accuracy (%) 54.6 66.0 67.4 94.2 95.9 
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Fig. 11. Confusion matrix for Basic motion method. 

  
Fig. 12. Confusion matrix for PCA method (with 12 principal 

components).      

 
Fig. 13.  Confusion matrix for DTW method. 

 
Fig.  14. Confusion matrix for HMM method. 

C. Experiment 3: One Shot Learning Performance 

One instance (one repetition by a subject) for each gesture 

in the lexicon was used for training and remaining 

observations were used for testing.  Ten sessions were used for 

cross validation for each gesture (k-fold with k=10). In each 

session, 10 observation (10 gestures x 1 subjects x 1 

repetitions) was used for training and 740 gestures (8 gestures 

x 9 subject x 10 repetitions and 2 gestures x 1 subjects x 10 

repetitions) were used for testing. This cross validation 

resulted in an average accuracy of 82.78%. A confusion 

matrix was computed and is shown by Fig. 15 (with a 

temporal window size of w=19). The recognition accuracy 

found is comparable to those reported in the ChaLearn 

Competition [33] in 2012 (fourth place in the competition). 

 
Fig. 15. Confusion matrix for one shot learning (window size w=19) . 

D. Experiment 4: Robotic Control Performance 

 Since the first remotely driven robotic arm developed by 

Goldberg et al. (1995) [53] for gardening tasks (Telegarden), 

there has been an extensive wave of remote labs enabling 

users the ability to perform lab experiments without the need 

to physically attend them. Some examples include a work-cell 

with a 6 axes robot for conducting experiments remotely [54]; 

a LEGO mobile robotic platform for experimenting with 

autonomous navigation [55]; and a remote laboratory on 

robotics was developed at University of Siena called TeleTab 

[56].  

A chemistry laboratory based experiment was performed by 

five subjects including two individuals with quadriplegia due 

to a cervical spinal cord injury and three able-bodied 

individuals. In the laboratory case study experiment, a mobile 

robot was controlled by the gesture algorithm to transport a 

beaker to a position near a robotic arm. The robotic arm was 

activated by the operator to add a reagent to the beaker and 

then, the mobile robot was brought back to its original 

position. The gestures (a)-(h) (from the lexicon in Fig. 6) were 

used and mapped to the commands: ‘change mode’, ‘robotic 

arm action’, ‘go forward’, ‘go backward’, ‘turn left’, ‘turn 

right’, ‘stop’ and ‘enable robotic arm’. The two robots were 

controlled by three modes; discrete, continuous and hybrid 

mode (discrete plus continuous mode). In discrete mode, for 

each issued command, the mobile robot moved a fixed 

increment of distance. While in continuous mode, the mobile 

robot responded to a given command, until the ‘stop’ 

command was issued. To switch between the discrete and 

continuous mode one distinctive gesture (‘upward’) was used. 

In the experiment, the discrete, continuous and hybrid 

(continuous plus discrete) control modes were each tested five 

times by all subjects. The resulting average task completion 

times were 241.8, 134.7 and 169.6 seconds, for the discrete, 

continuous and hybrid mode, respectively (Fig. 16). From the 

results, the completion time of discrete mode took longer time 
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than the continuous.  Continuous and hybrid modes require 

commands to be issued only when the robot needs to change 

directions or stop, therefore fewer operations were required for 

continuous and hybrid modes than for discrete mode for the 

task observed.  

 
Fig. 16. Average task completion time, unpaired t-test, p<0.001. 

V. DISCUSSION & CONCLUSION 

A machine vision based gestural interface was developed 

for individuals with upper extremity physical impairments. 

Since skin and non-skin color histogram models were used to 

initialize the face and hands’ centroid, the performance of the 

system may be affected when the users wear short sleeves. In 

addition, it is expected that users will be seated within the 

working distance to range specified by the Kinect sensor. An 

interaction model was incorporated into the color-based 

particle filter framework for hand tracking. When there was no 

interaction between the face and hands, multiple independent 

particle filters tracked the users’ movements. When interaction 

was present, the multiple independent particle filter trackers 

were combined with an interaction model to solve “false 

merging” and “false labeling” problems. A comparison 

between our proposed approach (CPMC), and five state of the 

art algorithms demonstrated that our approach can achieve 

robust performance for hand tracking through interaction and 

occlusion conditions. The proposed tracking strategy can 

obtain significantly better performance than the other three 

methods for both “false merge” and “false labeling” problems 

in hand tracking through interaction and occlusion. Yet, 

improvements are still need for “false labeling” solving. A 

training procedure was proposed to obtain motion models for 

each gesture in the lexicon. The CONDENSATION algorithm 

with the proposed training procedure was used and compared 

with 4 other recognition algorithms to classify bimanual 

gestures. Results showed that HMM based recognition 

methods may deliver comparable results to our method. Thus, 

higher recognition could be achieved by using trajectories 

classification based method. The gesture recognition algorithm 

designed was found to reach a recognition accuracy of 95.8%. 

One shot learning was applied in this paper to customize 

gestures and reduce the number of repetitions required to 

train/teach the system to a minimum (one observation). The 

results obtained were comparable to the state of art one shot 

gesture recognition algorithms presented in the ChaLearn 

Challenge [33]. 

A laboratory task experiment was conducted, a typical 

biomedical lab procedure with the help of two robots, which 

were controlled through a gestural interface. Subjects with 

upper extremity physical impairments can successfully use the 

machine vision based gestural interface to control the two 

robots. It was found that the proposed gestural interface was 

robust enough to support the completion of this task for 

subjects with upper extremity mobility impairments. In 

addition, three modes of operation were compared: discrete, 

continuous and hybrid. Results showed that the continuous 

mode required the least average task completion time, while 

the discrete control mode requires the most. Therefore, the 

authors recommend to use continuous control mode in general, 

and to use discrete mode only when the robot is very near to 

the target, for precise location and manipulation.  

VI. FUTURE WORK 

Future work for this paper may include: (1) develop more 

effective and robust algorithms to solve “false merge” and 

“false labeling” problems of hand tracking through interaction 

and occlusion. (2) extend the laboratory task to increase the 

pool of participating users. Ideally, users with physical 

impairments can participate and provide feedback about the 

usability, learning and adaptability to the interface suggested. 

APPENDIX 

The video sequences of two activities for hand tracking through interaction 

are shown as in Fig. 17, and 18. 

 

 
           Frame 467                        Frame 474                        Frame 479 

 

 
           Frame 489                        Frame 491                         Frame 495                               

Fig. 17. Hand tracking sequence for “clapping hands” activity. 

 

 
           Frame 228                        Frame 236                        Frame 240 
 

 
             Frame 255                         Frame 257                       Frame 26 

Fig. 18. Hand tracking sequence for “moving one hand up and down” 

activity. 
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